
So�ware Development (cs2500)

Lecture 16: �e Euclidean Algorithm

M.R.C. van Dongen

November 8, 2010

Contents

1 �e Euclidean Algorithms 1

1.1 Basic De�nitions . 1

1.2 Naive Gcd Algorithms . 2

1.3 �e Euclidean Algorithm . 3

1.4 Simplifying Fractions . 4

1.5 Interlude: Finite Fields . 4

1.6 �e Extended Euclidean Algorithm . 5

1.7 Interesting Facts . 7

2 Modular Arithmetic 8

3 For Wednesday 12

1 �e Euclidean Algorithms

�is section studies the oldest known algorithm: the Euclidean Algorithm—more than 2000 years old.

We shall start with some basic de�nitions. Next we shall study a naive algorithm for computing greatest

common divisors. We continue with the Euclidean Algorithm, which is much more e�cient. Next, we

shall study the Extended Euclidean Algorithm and an interesting application: computing multiplicative

inverses modulo prime numbers. We shall conclude by studying an interesting fact about prime numbers.

1.1 Basic De�nitions

Let s be a non-negative integer. An integer, a ≥ 0, is a multiple of s if a = s × t , for some integer t . We

write s | a if a is a multiple of s . We write s - a is a is not a multiple of s . By “analogy” we say that s divides
a if s | a. �e following are some examples:

• 1 | a for every a ∈N. Proof: s = 1 take t = a.

1

• 2 | a for every even a ∈N. Proof: s = 2 take t = a/2.

• 2 - a for every odd a ∈N. Proof: s = 2 but t = a/2 isn’t an integer.

• s | 0 for every s ∈N. Proof: take t = 0.

• Let a and s be positive integers. If a % s 6= 0, then s - a. Proof: t = a/s is not an integer.

De�nition 1 (Greatest Common Divisor). Let a and b be non-negative integers. �e greatest common
divisor of a and b is the largest integer g such that g | a and g | b . �e greatest common divisor of a and

b is denoted gcd(a, b).

Note: gcd(i , 0) = i for all non-negative integers i . Proof: clearly, i | 0 and i | i . Next note that

gcd(i , 0) cannot exceed i , so i is the largest possible common divisor.

1.2 Naive Gcd Algorithms

�is section studies an obvious algorithm for computing greatest common divisors. �e algorithm is

based on the factorisation-based algorithm for bringing fractions to lowest terms. �e following is the a

possible implementation of the algorithm. However, the algorithm is hopelessly ine�cient.

public static int factorisationBasedGcd(int a, int b) {
int gcd;

if (a == 0) {
gcd = b;

} else if (b == 0) {
gcd = a;

} else {
gcd = 1;
int factor = 2;
while ((a >= factor) && (b >= factor)) {

if (((a % factor) == 0) && ((b % factor) == 0)) {
a /= factor;
b /= factor;
gcd *= factor;

} else {
factor ++;

}
}

}

return gcd;
}

Don’t Try this at Home

�e termination and correctness proofs are le� as an exercise for the reader.

2

1.3 �e Euclidean Algorithm

�e Euclidean Algorithm is one of the oldest known algorithms. Given two non-negative integers a and

b it computes the gcd of a and b . �e algorithm is so important that you must know it for the exam.

Proving termination is trivial, so you also have to know that. �e only thing which you don’t need to

know is a correctness proof. �e following is an implementation of the algorithm in Java.

/**
* Compute greatest common divisor of two nonnegative integers.
*
* @param a a nonnegative integer.
* @param b a nonnegative integer.
* @return the greatest common divisor of {@code a} and {@code b}.
*/

public static int gcd(int a, int b) {
while (b != 0) {

final int r = a % b;
a = b;
b = r;

}
return a;

}

Java

�eorem 2 (�e Euclidean Algorithm Terminates). It is not di�cult to see that the algorithm terminates.
For example, assume it doesn’t. Let bi be the value of b in the i th iteration. �en this gives rise to the in�nite
sequence

b1 > b2 > b3 >

No such sequence exists because each bi is a positive integer.

�e correctness proof is not much more complicated, but you don’t need to know it for the exam.

For simplicity, we use the following recursive version of the algorithm. �e variable q isn’t needed but it

helps simplify the proof. Make sure you understand why this algorithm is equivalent.

3

public static int gcd(int a, int b) {
final int gcd;

if (b != 0) {
final int q = a / b;
final int r = a % b; // a == r + q * b AND r == a - q * b.
gcd = gcd(b, r);

} else {
gcd = a;

}

return gcd;
}

Java

Correctness of Euclidean Algorithm. Assume b = 0. Clearly the algorithm computes gcd(a, b). Assume
b 6= 0. Let g = gcd(a, b) and let G = gcd(b , r). First notice that r = a− q× b . Since g | a and g | b ,

it follows that g | r and that g ≤G. Next notice that a = r + q × b . Since G | b and G | r , it follows

that G | a and that g ≥G. We may complete the proof by observing that g ≤G and g ≥G. �erefore

g =G.

1.4 Simplifying Fractions

In this section we shall study an application of the Euclidean Algorithm: simplifying factions.

Let a ≥ 0 and b > 0 be two integers. �e algorithm for reducing the fraction
a
b to lowest terms may

be done with the aid of the Euclidean Algorithm. To simplify the fraction, you compute

a/gcd(a, b)

b/gcd(a, b)
.

1.5 Interlude: Finite Fields

A �eld is a structure where addition, subtraction, division, and multiplication work “as expected”. For

example, the rationals, reals, and complex numbers are �elds. N is not a �eld because is x ∈N and y ∈N
then x− y may not be inN. In technical terms we say thatN is not closed under subtraction. LikewiseZ
is not a �eld because it is not closed under division. A �eld is �nite if it has �nitely many members.

An example of a �nite �eld is arithmetic modulo a prime number p . Addition, subtraction, and

multiplication work as usual, but we make sure that the result is in the range {0, . . . , p − 1} by adding a

suitable multiple of p . For division we need a multiplicative inverse x−1
for each x 6= 0. �is inverse should

satisfy x × x−1 ≡ 1 (mod p). It is guaranteed that such an x−1
exists. Next we de�ne y/x = y × x−1

.

4

Tables 1–4 list the Cayley tables for addition, additive inverse, multiplication, and multiplicative

inverse of a �nite �eld: arithmetic modulo 3. Strange as it may seem, Table 4 shows that 2−1 = 2. �is

follows from the fact that x × x−1 ≡ 1 (mod p) for all x 6= 0 and for x = 2 in particular.

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Table 1: Cayley table for addition modulo 3.

x −x
0 0
1 2
2 1

Table 2: Cayley table for additive inverse modulo 3.

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Table 3: Cayley table for multiplication modulo 3.

1.6 �e Extended Euclidean Algorithm

It is well known that if a and b are non-negative integers, then

gcd(a, b) = s × a+ t × b ,

for suitably chosen integers s and t . �e Extended Euclidean Algorithm computes gcd(a, b) as well as

the integers s and t . E�ectively, the algorithm is the same as the Euclidean Algorithm. However, this

time it expresses ai and bi as linear combinations of a0 and b0. Here we use the notation 〈var〉i for the

value of 〈var〉 in the i th iteration and 〈var〉0 for the initial value of 〈var〉. Initially, we have:

� a1
b1

�

= [1 0
0 1]
� a0

b0

�

.

�e notation

� ai
bi

�

=
� si ti

ui vi

�
� a0

b0

�

is shorthand notation for the following two equalities: ai = si ×
a0+ ti × b0 and bi = ui × a0+ vi × b0. In the i th iteration of the extended Algorithm we have:

� ai
bi

�

=
� si ti

ui vi

�
� a0

b0

�

.

5

x x−1

1 1
2 2

Table 4: Cayley table for multiplicative inverse modulo 3.

We also have ai+1 = bi and bi+1 = ai − ai × qi . �is translates to:

� ai+1
bi+1

�

=
� ui vi

si−qi×ui ti−qi×vi

�
� a0

b0

�

.

�is algorithm is not examinable.

Table 5 provides an example.

ai bi qi si ti ui vi

3 5 0 1 0 0 1
5 3 1 0 1 1 0
3 2 1 1 0 −1 1
2 1 2 −1 1 2 −1
1 0 2 −1 −5 3

Table 5: Simulating the Extended Euclidean Algorithm.

�e following is the core of the algorithm. For sake of presentation, some lines have two statements.

Note that the �rst two statements are not needed, but they allow us to write the invariants. Note that the

�rst four statements in the while statement are the same as in the Euclidean Algorithm. �e remaining

statements are for the additional computations.

A = a;
B = b;
s = 1; t = 0; // a = s * A + t * B
u = 0; v = 1; // b = u * A + v * B
while (b != 0) {

q = a / b;
r = a % b;
a = b;
b = r;
s1 = s;
t1 = t;
s = u;
t = v; // a = s * A + t * B
u = s1 - q * u;
v = t1 - q * v; // b = u * A + v * B

}

Java

6

Before studying an application of the Extended Euclidean Algorithm, it is recalled that an integer,

p > 1, is a prime if i - p , for all integers i such that 1< i < p . It can be shown that if p is a prime and

1≤ i < p an integer, then gcd(i , p) = 1. Note that if p % i 6= 0 then i - p .

A common application of the Extended Euclidean Algorithm is to compute multiplicative inverses

over �nite �elds. Let p be a prime number. In “arithmetic” modulo p , we represent numbers as non-

negative integers less than p . Implementing modular addition, subtraction, and multiplication are

straightforward. We can implement division with the Extended Euclidean Algorithm.

For example, let 0≤ x < p be an integer. Dividing by x is equivalent to multiplying by x−1
. Since p

is a prime, we know that gcd(x, p) = 1. �erefore, applying the algorithm �nds s and t such that

s × x + t × p = 1 .

It immediately follows that s × x ≡ 1 (mod p). �erefore, s ≡ x−1 (mod p).
For example, let p = 5 and let x = 3. We want to �nd an integer y such that x × y ≡ 1 (mod p).

(We require that 0≤ y < p .) Applying the algorithm gives us s = 2 and t =−1, so y = 2. (Note that it

is not always guaranteed that 0≤ s < p , so shi�ing to {0, . . . , p − 1}may be required.) Lo and behold:

x × y ≡ 6 (mod 5)≡ 1 (mod 5).

1.7 Interesting Facts

In this section we shall look at some interesting facts about prime numbers.

Proposition 1. Let p be a prime and let 0< i < p and 0≤ k ≤ p be integers. �en (i × k)% p = 0 if
and only if k = 0 or k = p .

Proof. It is recalled that (i × k)% p = 0 if and only if i × k || p . Since p is a prime, i × k | p if and only

if i | p or k | p . We have i - p because 0< i < p and because p is a prime. Likewise, k - p if 0< k < p .

However, if k ∈ {0, p}, then (i × k)% p = 0.

In the following two lectures we shall study some algorithms that exploit Proposition 1. �e following

are the preliminaries.

Let p be a prime. Let’s assume we have p squares: s0, s1, …, sp−1. Let’s pick an initial square: si . We

know that we can visit all squares using the sequence

si , s(i+1)% p , s(i+2)% p , . . . , s(i+p−1)% p .

�e theorem tells us we can also visit all squares using other o�sets than 1. For example, if p = 5 and

i = 0, then each of the following work:

[s0 , s1 , s2 , s3 , s4] , [s0 , s2 , s4 , s1 , s3] , [s0 , s3 , s1 , s4 , s2] ,
and

[s0 , s4 , s3 , s2 , s1] .

It should also work for other initial positions i .

7

2 Modular Arithmetic

In this section we shall implement a class for arithmetic modulo a prime number.

�e following is a rough design of the class.

/**
* Support for computations in finite fields.
*
* <PAR> The number of elements in the field should be a prime. </PAR>
*
* @author M. R. C. van Dongen
*/

public class FiniteField {
/**
* The size of the field.
*/

private final int prime;

/**
* Basic constructor.
*
* @param size the size of the field.
*/

public FiniteField(int size) {
prime = size;

}
.
.
.

@Override
public String toString() {

return "FiniteField[prime = " + prime + "]";
}

}

Java

�e following method “scales” and “shi�s” a given int to the range {0, . . . , p−1}, where p is the size

of the �eld. In technical terms, we want a representative of the int which is equivalent to the int modulo

p . Here, two numbers a and b are equivalent modulo p if a − b is a multiple of p . A non-negative

number is a representative if it is less than p . Because of Java’s (odd) rules for division, we need to be

careful when number is negative: returning number % prime doesn’t work!

8

/**
* Compute representative of given integer.
*
* @param number any integer.
* @return the unique integer, {@code rep}, such that
* {@code 0 <= rep} and {@code rep < prime} and
* {@code number == rep} modulo {@code prime}.
*/

public int representative(int number) {
return (prime + number % prime) % prime;

}

Java

�e following method add two ints and returns the result modulo prime.

/**
* Add two integers modulo size of the field.
*
* @param a the first operand.
* @param b the second operand.
* @return the sum of {@code a} and {@code b} modulo {@code prime}.
*/

public int add(int a, int b) {
return representative(representative(a) + representative(b));

}

Java

We can implement subtraction in terms of addition and “negation”, where negating a number, n,

means computing a number, m, such that n+m ≡ 0 (mod p).

9

/**
* Subtract two integers modulo size of the field.
*
* @param a the first operand.
* @param b the second operand.
* @return the difference of {@code a} and {@code b} modulo {@code prime}.
*/

public int subtract(int a, int b) {
return add(a, additiveInverse(b));

}

/**
* Compute the additive inverse of a given number modulo the size
* of the field.
*
* @param a the integer.
* @return {@code -a} modulo {@code prime}.
*/

public int additiveInverse(int a) {
return representative(- a);

}

Java

Multiplication is straightforward.

/**
* Multiply two integers modulo size of the field.
*
* @param a the first operand.
* @param b the second operand.
* @return the product of @code a and @code b modulo @code prime.
*/

public int multiply(int a, int b) {
// Note that representative(a * b) is more fragile because of overflow.
return representative(representative(a) * representative(b));

}

Java

Division may be implemented using multiplication. �e method reciprocal() is for computing

multiplicative inverses. �is is where we need the Extended Euclidean algorithm.

10

/**
* Divide two integers modulo size of the field.
*
* @param a the first operand.
* @param b the second operand.
* @return the quotient of {@code a} and {@code b} modulo {@code prime}.
*/

public int divide(int a, int b) {
return multiply(a, reciprocal(b));

}

Java

�e implementation of the method method reciprocal() is for completes the implementation of

the class. Some lines of the method are combined to keep the listing short. Strictly speaking this violates

the coding conventions, but it improves the presentation.

/**
* Compute the multiplicative inverse of number modulo the size
* of the field.
*
* @param a the integer.
* @return The integer {@code i} such that
* {@code 0 < i},
* {@code i < prime}, and
* {@code i * a == 1} modulo {@code prime}.
*/

public int reciprocal(int a) {
int b, q, r, s, t, u, v, s1, t1;
s = 1; t = 0;
u = 0; v = 1;
b = prime;
while (b != 0) {

q = a / b; r = a % b;
a = b; b = r;
s1 = s; t1 = t;
s = u; t = v;
u = s1 - q * u; v = t1 - q * v;

}
return representative(s);

}

Java

11

3 For Wednesday

Study the notes.

12

	The Euclidean Algorithms
	Basic Definitions
	Naive Gcd Algorithms
	The Euclidean Algorithm
	Simplifying Fractions
	Interlude: Finite Fields
	The Extended Euclidean Algorithm
	Interesting Facts

	Modular Arithmetic
	For Wednesday

